Optimal Design of Planar Frames Based on Stability Criterion
نویسنده
چکیده
This paper suggests an optimization-based design methodology for improving the strength and overall stability of framed structures, the capacities of which are governed by inelastic limit-load behavior. The optimization objective function, comprising the dominant linearized buckling eigenvalue of the structure weighted by a frequency-dependent penalty function, is motivated by a simple model of nonlinear frame behavior. Designs are constrained to have constant weight. The method requires only the linearized buckling eigenvalues and eigenvectors of the structure, avoiding computationally intensive nonlinear structural analyses in the design cycle. An iterative optimality-criteria method is used to solve the optimization problem. Several examples are given to examine the performance of the procedure, both in terms of robustness of the numerical algorithm and the quality of the designs it produces. By way of example, it is shown that by improving the overall stability characteristics of a structure under static loading, the dynamic performance of the structure is often improved.
منابع مشابه
OPTIMAL PERFORMANCE-BASED SEISMIC DESIGN OF COMPOSITE BUILDING FRAMES WITH RC COLUMNS AND STEEL BEAMS
Composite RCS building frames integrate reinforced concrete columns with structural steel beams to provide an efficient solution for the design and construction of earthquake-resisting structures. In this paper, an optimization framework is developed for performance-based seismic design of planar RCS moment resisting frames. The objective functions are defined as minimizing the construction cos...
متن کاملOptimal Design of Geometrically Nonlinear Structures Under a Stability Constraint
This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...
متن کاملA COMBINATION OF PARTICLE SWARM OPTIMIZATION AND MULTI-CRITERION DECISION-MAKING FOR OPTIMUM DESIGN OF REINFORCED CONCRETE FRAMES
Structural design optimization usually deals with multiple conflicting objectives to obtain the minimum construction cost, minimum weight, and maximum safety of the final design. Therefore, finding the optimum design is hard and time-consuming for such problems. In this paper, we borrow the basic concept of multi-criterion decision-making and combine it with Particle Swarm Optimi...
متن کاملA Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm
In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...
متن کاملPLASTIC ANALYSIS OF PLANAR FRAMES USING CBO AND ECBO ALGORITHMS
In rigid plastic analysis one of the most widely applicable methods that is based on the minimum principle, is the combination of elementary mechanisms which uses the upper bound theorem. In this method a mechanism is searched which corresponds to the smallest load factor. Mathematical programming can be used to optimize this search process for simple fra...
متن کامل